
MKICS PL/SQL Procedures / Functions

Prepared By Heena Patel(Asst Prof) Page 1

� A procedure is a logically grouped set of SQL and PL/SQL statements that perform a

specific task.

� They are the named PL/SQL block that can be compiled and stored in one of the Oracle

engine’s system tables.

Procedures and Functions are made up of:

• A declarative part: May contain the declaration of cursor, variables, exceptions

or any other sub programs. These objects are local to the

procedure or function.

 • An executable part: Contains statements that assign values, control execution

 and manipulate data.

• An optional exception-handling part: Deals with exceptions that may be

 raised during execution of code.

Procedures and Functions are stored in Oracle database but before storing they are

compiled and parsed by Oracle engine.

Where do stored procedure and functions reside?

� Procedure and function is stored in the oracle database. They can be invoked or

called by any PL/SQL block.

� Before a procedure or function is stored, the oracle engine parses and compiles the

procedure or function.

The following steps are performed automatically by oracle engine while creating procedure.

1. Compiles the procedure and functions.

2. Stores the procedure or functions in the database.

� The oracle engine complies the pl/sql code block. If error occurs during the

compilation of the procedure and function, an invalid procedure and function get

created.

The oracle engine displays a message after creation that the procedure or function was

created with compilation error.

� For displaying error using select query

SELECT * FROM USER_ERRORS;

� When the procedure and function is invoked, the oracle engine loads the compiled

procedure and function in memory area is called the SYSTEM GLOBAL AREA(SGA).

This allows the code to be executed quickly.

MKICS PL/SQL Procedures / Functions

Prepared By Heena Patel(Asst Prof) Page 2

� How does the oracle engine execute procedures/functions?

� Verifies user access

� Verifies procedure or function validity.

� Execute the procedure or function.

� To check status of procedure and function is shown by use of select statement as

follows:

• SELECT object_name, object_type, status FROM USER_OBJECTS

WHERE object_type = ‘PROCEDURE’;

• SELECT object_name, object_type, status FROM USER_OBJECTS

WHERE object_type = ‘FUNCTION’;

If status is valid, will a procedure and function be executed. Once found valid, the oracle

engine loads a procedure or function into memory.

� Advantages Of Using A Procedure or Function

• Security : Store procedure and functions can help enforce data security. for

 eg by giving permission to a procedure and function with grant option.

• Performance : it improve the database performance. When procedure and

function is present in the shared pool of the SGA retrieval from disk is not

required every time different user call the procedure or function.

• Memory Allocation : the amount of memory used reduces as stored procedure or

function have shared memory capabilities. Only one copy of procedure needs to be

loaded for execution by multiple users.

• Productivity : by writing procedure and function redundant coding can be

avoided, increasing productivity.

• Integrity : a procedure and function needs to be tested only once to guarantee that

it returns an accurate result. The oracle engine has high level of in-built security

and integrity of procedure and function.

� Procedures Vs Functions

• A function must return a value back to the caller.

• By defining multiple OUT parameters in a procedure, multiple values can be

Passed to the caller.

MKICS PL/SQL Procedures / Functions

Prepared By Heena Patel(Asst Prof) Page 3

� Creating stored procedure

Syntax : CREATE [OR REPLACE] PROCEDURE procedure_name

[(argument [IN | OUT | IN OUT] data type [, ...])]

{IS | AS}

<DECLARATION SECTION>

BEGIN

< procedure_body >

EXCEPTION

<exception handler>]

END [procedure name];

Keywords and parameters

REPLACE Recreates the procedure if already exists. This option is used to change

the definition of an existing procedure without dropping, recreating.

PROCEDURE Is the name of procedure to be created.

ARGUMNET is the name of argument to the procedure.

IN Indicates that the parameter will accept a value from the user.

OUT Indicates that the parameter will return a value to the user.

INOUT Indicates that the parameter will either accept a value from the user or

return a value to the user.

DATA TYPE Is the data type of an argument. It supports any data type supported by

PL/SQL

Example :

CREATE OR REPLACE PROCEDURE sample

AS

BEGIN

dbms_output.put_line('Hello World!');

END;/

OUTPUT:

Procedure created.

� Executing a Standalone Procedure

A standalone procedure can be called in two ways:

• Using the EXECUTE keyword

• Calling the name of the procedure from a PL/SQL block

� The above procedure named 'sample' can be called with the EXECUTE keyword as:

EXECUTE sample;

The above call would display:

Hello World

PL/SQL procedure successfully completed.

� The procedure can also be called from another PL/SQL block:

BEGIN

sample;

END;

/

The above call would display:

MKICS PL/SQL Procedures / Functions

Prepared By Heena Patel(Asst Prof) Page 4

Hello World

PL/SQL procedure successfully completed.

� IN & OUT Mode Example 1

This program finds the minimum of two values, here procedure takes two numbers using

IN mode and returns their minimum using OUT paramters.

SQL> create or replace PROCEDURE findMin(x IN number, y IN number, z OUT number) IS

 BEGIN

 IF x < y THEN

 z:= x;

 ELSE

 z:= y;

 END IF;

 END;

 /

Procedure created.

SQL> DECLARE

 2 a number;

 3 b number;

 4 c number;

 5 BEGIN

 6 a:= 23;

 7 b:= 45;

 8 findMin(a, b, c);

 9 dbms_output.put_line(' Minimum of (23, 45) : ' || c);

 10 END;

 11 /

Minimum of (23, 45) : 23

PL/SQL procedure successfully completed.

� Methods for Passing Parameters

Actual parameters could be passed in three ways:

• Positional notation

• Named notation

• Mixed notation

• POSITIONAL NOTATION

In positional notation, you can call the procedure as:

Example : findMin(a, b, c, d);

• NAMED NOTATION

In named notation, the actual parameter is associated with the formal parameter

using the arrow symbol (=>). So the procedure call would look like:

Example : findMin(x=>a, y=>b, z=>c, m=>d);

MKICS PL/SQL Procedures / Functions

Prepared By Heena Patel(Asst Prof) Page 5

• MIXED NOTATION

In mixed notation, you can mix both notations in procedure call; however, the

positional notation should precede the named notation.

The following call is legal:

findMin(a, b, c, m=>d);

But this is not legal:

findMin(x=>a, b, c, d);

� Deleting a Standalone Procedure

A standalone procedure is deleted with the DROP PROCEDURE statement. Syntax for

deleting a procedure is:

DROP PROCEDURE procedure-name;

So you can drop greetings procedure by using the following statement:

BEGIN

DROP PROCEDURE greetings;

END;/

� PL/SQL Functions

A PL/SQL function is same as a procedure except that it returns a value.

Creating a Function

A standalone function is created using the CREATE FUNCTION statement.

CREATE [OR REPLACE] FUNCTION function_name

[argument IN data type [, ...])]

RETURN return_datatype

{IS | AS}

<DECLARATION SECTION>

BEGIN

< function_body >

[EXCEPTION

<exception code>]

END [function name];

Keywords and parameters

REPLACE Recreates the procedure if already exists. This option is used to change

the definition of an existing procedure without dropping, recreating.

FUNCTION Is the name of function to be created.

ARGUMNET is the name of argument to the function.

IN Indicates that the parameter will accept a value from the user.

RETURN Is the data type of the function’s return values. Because every function

must return a value, this clause is required.

PROGRAM

BODY

Is the definition of function consisting of pl/sql statements.

Example:

The following example illustrates creating and calling a standalone function. This

function returns the total number of CUSTOMERS in the customers table. We will use

the CUSTOMERS table which we had created in PL/SQL Variables chapter:

Select * from customers;

MKICS PL/SQL Procedures / Functions

Prepared By Heena Patel(Asst Prof) Page 6

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

+----+----------+-----+-----------+----------+

CREATE OR REPLACE FUNCTION totalCustomers

RETURN number IS

total number(2) := 0;

BEGIN

SELECT count(*) into total

FROM customers;

RETURN total;

END;

/

When above code is executed using SQL prompt, it will produce the following result:

Function created.

� Calling a Function

� While creating a function, you give a definition of what the function has to do. To use a

function, you will have to call that function to perform the defined task.

� When a program calls a function, program control is transferred to the called function.

� A called function performs defined task and when its return statement is executed or

when it last end statement is reached, it returns program control back to the main

program.

� To call a function you simply need to pass the required parameters along with

� function name and if function returns a value then you can store returned value.

Following program calls the function totalCustomers from an anonymous block:

DECLARE

c number(2);

BEGIN

c := totalCustomers();

dbms_output.put_line('Total no. of Customers: ' || c);

END;/

When the above code is executed at SQL prompt, it produces the following result:

Total no. of Customers: 6

PL/SQL procedure successfully completed.

MKICS PL/SQL Procedures / Functions

Prepared By Heena Patel(Asst Prof) Page 7

Example :

CREATE OR REPLACE PROCEDURE raise_salary(emp_id INTEGER,increase REAL) IS

 curr_salary real;

 sal_missing EXCEPTION;

 BEGIN

 SELECT salary INTO curr_salary from emp

 WHERE id = emp_id;

 IF curr_salary IS NULL THEN

 RAISE sal_missing;

 ELSE

 UPDATE emp SET SALary = SALary+INCREASE

 WHERE id = emp_id;

 END IF;

 EXCEPTION

 WHEN NO_DATA_FOUND THEN

 INSERT INTO EMP_AUDIT VALUES(emp_id,'no such number');

 WHEN SAL_MISSING THEN

 INSERT INTO EMP_AUDIT VALUES (emp_id,'salary is null');

END RAISE_SALARY;

SQL> /

Procedure created.

� Calling procedure

declare

emp number := &emp;

incr number := &incr;

begin

raise_salary(emp,incr);

end;

